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Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a
severe test of numerical MHD schemes and has been surprisingly difficult to achieve due
to the range of flow conditions present. Here we present a new, higher order-accurate,
low dissipation numerical method which requires no additional dissipation or local ‘‘fixes”
for stable execution. We describe PPML, a local stencil variant of the popular PPM algo-
rithm for solving the equations of compressible ideal magnetohydrodynamics. The princi-
pal difference between PPML and PPM is that cell interface states are evolved rather that
reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved
using Riemann invariants containing all transverse derivative information. The conserva-
tion laws are updated in an unsplit fashion, making the scheme fully multidimensional.
Divergence-free evolution of the magnetic field is maintained using the higher order-accu-
rate constrained transport technique of Gardiner and Stone. The accuracy and stability of
the scheme is documented against a bank of standard test problems drawn from the liter-
ature. The method is applied to numerical simulation of supersonic MHD turbulence,
which is important for many problems in astrophysics, including star formation in dark
molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbu-
lence in highly compressible isothermal gas in a molecular cloud model. The low dissipa-
tion and wide spectral bandwidth of this method make it an ideal candidate for direct
turbulence simulations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Piecewise parabolic method on a local stencil (PPML) [1,2] is a new numerical scheme developed for solving multidimen-
sional compressible Euler (HD) and ideal magnetohydrodynamic (MHD) equations. The method is based on a piecewise par-
abolic approximation of variables inside individual grid cells. It is third order-accurate in space and it implies second order
temporal accuracy. This method is an improvement over the popular PPM introduced by Colella and Woodward [3,4] for
non-magnetized flows with strong shocks and extended by Dai and Woodward to compressible ideal magnetohydrodynam-
ics [5]. PPM has been widely used in computational practice ever since, and versions of the PPM gas dynamics scheme have
been incorporated into a number of codes for astrophysical applications [6].

The main new feature of PPML is the procedure for calculating interface values between adjacent cells. Instead of an inter-
polation procedure used in the original PPM formulation, which employs a four-point stencil, PPML relies on the information
preserved from a previous time step. The required values are obtained via Riemann invariants transferred along the
. All rights reserved.
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characteristic curves of the equations to cell boundaries using an approximate parabolic solution within a cell [7–11]. To pre-
serve the order of the scheme at local extrema, a monotonicity constraint is applied to these interface values [12–15]. In a
multidimensional case a monotonicity preserving method from [16] is additionally applied. The scheme is multidimensional
as it keeps terms containing derivatives with respect to the tangential directions in the equations for wave amplitudes. This
approach provides the left and right states for the Riemann problem based on multidimensional reconstruction. For the ideal
MHD case in three dimensions, a zero-divergence constraint on the magnetic field is enforced by the use of the Stokes the-
orem (the so-called constrained transport approach [17]). An updated component of the electric field at a cell boundary is
calculated by averaging the quantities obtained from given components of flux-vectors, taking into account a value of the
electric field gradient and the information about the sign of the tangential velocity at that boundary [18].

PPML has been tested on a number HD and MHD problems that demonstrated the ability of the method to resolve dis-
continuous solutions without adding excessive dissipation. PPML provides a very accurate treatment of strong discontinu-
ities, minimizes numerical dissipation of the kinetic and magnetic energy, and substantially improves the spectral
bandwidth for compressible turbulence models compared to its predecessors [19].

In this paper we present a comprehensive description of the numerical method for 3D MHD simulations as well as results
of numerical tests. The method has been substantially improved and remastered compared to its previous version presented
in [1,2]. The new PPML features in this paper include: (i) an improved approach to maintaining zero divergence for the mag-
netic field following [18], see Section 5; (ii) a monotonicity constraint proposed by Rider et al. [14], as described in Section 6;
(iii) an extended suite of test problems that includes a comparison with the FLASH3 MHD solver, see Section 8; Finally, in
Section 9 we illustrate the performance of PPML on a three-dimensional problem of highly compressible weakly magnetized
forced turbulence with a sonic Mach number of 10. The problem of supersonic, super-Alfvénic turbulence with an isothermal
equation of state proved to be a challenging regime for numerical modeling due to the presence of strong rarefactions and
very high density contrasts in the flow. PPML scheme is perfectly stable numerically on problems of this sort. We also briefly
discuss the effects of the weak magnetic field on the spectral properties of MHD turbulence and obtain good correspondence
between our numerical results and observed characteristics of supersonic turbulence in star forming molecular clouds.

2. PPML description

Let us consider a homogeneous one-dimensional grid with the spacing h and a function qðx; t0Þ � q0ðxÞ defined on this
grid at t ¼ t0. It is assumed that the function q0ðxÞ can be approximated by a parabola inside every grid cell (Fig. 1):
q0ðxÞ ¼ qL
i þ nðDqi þ qð6Þi ð1� nÞÞ; ð1Þ
where
n ¼ ðx� xi�1=2Þh�1
; Dqi ¼ qR

i � qL
i ;

qð6Þi ¼ 6ðqi � 1=2ðqL
i þ qR

i ÞÞ:
Function qi satisfies a condition
qi ¼ h�1
Z xiþ1=2

xi�1=2

q0ðxÞdx:
Let us consider a linear advection equation
@qðx; tÞ
@t

þ @Fðx; tÞ
@x

¼ 0; ð2Þ
where Fðx; tÞ ¼ aqðx; tÞ and find its solution for the moment t ¼ t0 þ s. On a discrete grid we have a number of local Riemann
problems which lead to some average states q�ðxiþ1=2; tÞ on every interface xiþ1=2 between the adjacent cells. Eq. (2) has only
one characteristic defined by dx=dt ¼ a. To find a value qiþ1=2, for example, on the right boundary of a cell number i at the
time step t ¼ t0 þ s, we suggest to move along the characteristic line from the point xiþ1=2 back to the moment t ¼ t0 and
use a value from some point on a previous parabola (Fig. 2).

Then for a > 0 we have
Fig. 1. Approximation of qðxÞ inside a cell.



Fig. 2. A characteristic inside a grid cell ða > 0Þ.
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qiþ1=2ðt0 þ sÞ � qR
i ðt0 þ sÞ ¼ qL

i þ nðDqi þ qð6Þi ð1� nÞÞ; ð3Þ
where
n ¼ ðx� xi�1=2Þh�1 ¼ ðh� asÞh�1 ¼ 1� ash�1
: ð4Þ
All the values in the rhs of (3) must be taken from a previous time step t ¼ t0. For a < 0 a value qiþ1=2 is defined by a parabola
in the cell number iþ 1:
qiþ1=2ðt0 þ sÞ � qL
iþ1ðt0 þ sÞ ¼ qL

iþ1 þ nðDqiþ1 þ qð6Þiþ1ð1� nÞÞ;
where n ¼ �ash�1.
In monotonic regions, where qiþ1=2 2 ½qi � � � qiþ1�, it is assumed that qR

i ¼ qL
iþ1 ¼ qiþ1=2 and qL

i ¼ qR
i�1 ¼ qi�1=2. In non-mono-

tonic regions we must redefine qL
i and qR

i . If qi is a local maximum or minimum, the interpolation function (1) must be con-
stant, i.e. qL

i ¼ qR
i ¼ qi. If qi is too close to qL

i or qR
i , the parabola (1) can have an extremum inside the grid cell (it happens when

jDqij < jq
ð6Þ
i j). In this case we must move this extremum to the boundary of the cell. These conditions can be written as
qL
i ¼ qi; qR

i ¼ qi; if ðqL
i � qiÞðqi � qR

i Þ 6 0 ð5Þ
and
qL
i ¼ 3qi � 2qR

i ; if Dqi � q
ð6Þ
i > ðDqiÞ

2
;

qR
i ¼ 3qi � 2qL

i ; if Dqi � q
ð6Þ
i < �ðDqiÞ

2
:

ð6Þ
If we know the function qðxÞ, we can compute its average for the interval ½xiþ1=2 � y � � � xiþ1=2� (for y > 0):
�qL
iþ1=2ðyÞ ¼ y�1

Z xiþ1=2

xiþ1=2�y
qðxÞdx ¼ qR

i � 1=2yh�1½Dqi � ð1� 2=3yh�1Þqð6Þi �: ð7Þ
For a > 0, the solution of (2) at time t ¼ t0 þ s can be found by averaging over the interval ½xiþ1=2 � as; xiþ1=2�, i.e.
q�ðxiþ1=2; t0 þ sÞ � qL

iþ1=2 ¼ �qL
iþ1=2ðasÞ. For a < 0 the zone of influence is ½xiþ1=2; xiþ1=2 þ as�. In this case

q�ðxiþ1=2; t0 þ sÞ � qR
iþ1=2 ¼ �qR

iþ1=2ð�asÞ, where
�qR
iþ1=2ðyÞ ¼ y�1

Z xiþ1=2þy

xiþ1=2

qðxÞdx ¼ qL
iþ1 þ 1=2yh�1½Dqiþ1 þ ð1� 2=3yh�1Þqð6Þiþ1�; y > 0: ð8Þ
The flux on the interface can be computed as
Fiþ1=2 ¼ aþqL
iþ1=2 þ a�qR

iþ1=2; ð9Þ
where aþ ¼maxða;0Þ ¼ ðaþ jajÞ=2; a� ¼minða;0Þ ¼ ða� jajÞ=2. We can use an arbitrary value for qL
iþ1=2 if a < 0, and for qR

iþ1=2

if a > 0.

3. The governing equations

Let us consider the ideal MHD equations in 3D in the following form:
@tUþ @xFþ @yGþ @zH ¼ 0: ð10Þ
Here U is a vector of eight conservative variables, F, G and H are the fluxes:
U ¼ ðq;qu;qv ;qw;Bx;By;Bz; EÞT ; ð11Þ
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F ¼ ðqu;qu2 þ �p� B2
x ;quv � BxBy;quw� BxBz;0;uBy � vBx; uBz �wBx;uðEþ �pÞ � BxðuBx þ vBy þwBzÞÞT ; ð12Þ

G ¼ ðqv;quv � BxBy;qv2 þ �p� B2
y ;qvw� ByBz;vBx � uBy;0;vBz �wBy;vðEþ �pÞ � ByðuBx þ vBy þwBzÞÞT ; ð13Þ

H ¼ ðqw;quw� BxBz;qvw� ByBz;qw2 þ �p� B2
z ;wBx � uBz;wBy � vBz;0;wðEþ �pÞ � BzðuBx þ vBy þwBzÞÞT ; ð14Þ
where q is the density; u;v and w are the velocity components; Bx;By and Bz are the magnetic field components; E is the total
energy and �p is the total pressure:
�p ¼ pþ BB
2
:

We have included the factor 1=
ffiffiffiffiffiffiffi
4p
p

in the definition of B. An equation for the total energy and an ideal gas equation of state
are
E ¼ qeþ qvv
2
þ BB

2
;

p ¼ ðc� 1Þqe;
where c – the adiabatic index, e – the specific internal energy. If we denote
ðbx; by; bzÞ ¼
1ffiffiffiffiqp ðBx;By;BzÞ; b2 ¼ b2

x þ b2
y þ b2

z ;
we can write the sound velocity c, Alfvén velocity ca, the fast and the slow magneto-acoustic velocities cf ;s as
c ¼
ffiffiffiffiffiffi
cp
q

r
;

ca ¼ jbxj;

cf ;s ¼
1
2
ðc2 þ b2Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ b2Þ2 � 4c2b2

x

q� �1=2

:

We will also deal with a non-conservative form of the MHD equations:
@tV þ A@xV þ B@yV þ C@yV ¼ 0; ð15Þ
where
V ¼ ðq; u;v ;w;Bx;By; Bz; pÞT : ð16Þ
The matrices A;B and C can be computed using Jacobians of (10) and a transition matrix
M ¼ @U
@V

:

For example, the Jacoby matrix A is
A ¼ M�1 @F
@U

M ¼

u q 0 0 0 0 0 0

0 u 0 0 0 By=q Bz=q 1=q

0 0 u 0 0 �Bx=q 0 0

0 0 0 u 0 0 �Bx=q 0

0 0 0 0 u 0 0 0

0 By �Bx 0 0 u 0 0

0 Bz 0 �Bx 0 0 u 0

0 cp 0 0 0 0 0 u

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ð17Þ
The corresponding eigenvalues are
k1;8
x ¼ u� cf ; k2;7

x ¼ u� ca; k3;6
x ¼ u� cs; k4;5

x ¼ u:
k1;8
x represent a pair of fast magneto-acoustic waves, k2;7

x – a pair of Alfvén waves, k3;6
x – a pair of slow magneto-acoustic

waves, k4
x – an entropy wave, k5

x – a magnetic-flux wave. The eigenvectors of the Jacobians could have singularities at the
points of degeneracy of the eigenvalues since the MHD equations are nonstrictly hyperbolic. To avoid those, Brio and Wu
[20] suggested a scaled version of the eigenvectors that comes from defining
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ðby; bzÞ ¼

ðBy ;BzÞffiffiffiffiffiffiffiffiffiffi
B2

yþB2
z

p if B2
y þ B2

z – 0;

1ffiffi
2
p ; 1ffiffi

2
p

� �
otherwise;

8><
>:

ðaf ;asÞ ¼

ffiffiffiffiffiffiffiffiffi
c2�c2

s

p
;
ffiffiffiffiffiffiffiffiffi
c2

f
�c2

p� �
ffiffiffiffiffiffiffiffiffi
c2

f
�c2

s

p if B2
y þ B2

z – 0 or cp – B2
x ;

1ffiffi
2
p ; 1ffiffi

2
p

� �
otherwise:

8>>><
>>>:
Thus the left and the right eigenvectors are
l1;8
x ¼ 0;�af cf

2c2 ;�
as

2c2 csbysgnBx;�
as

2c2 csbzsgnBx; 0;
as

2
ffiffiffiffiqp c

by;
as

2
ffiffiffiffiqp c

bz;
af

2qc2

� �
;

r1;8
x ¼ qaf ;�af cf ;�ascsbysgnBx;�ascsbzsgnBx; 0;as

ffiffiffiffi
q
p

cby;as
ffiffiffiffi
q
p

cbz;af cp
	 
T

;

l2;7
x ¼ 0;0;� bzffiffiffi

2
p sgnBx;

byffiffiffi
2
p sgnBx; 0;�

bzffiffiffiffiffiffi
2q

p ;�
byffiffiffiffiffiffi
2q

p ; 0

 !
;

r2;7
x ¼ 0; 0;� bzffiffiffi

2
p sgnBx;

byffiffiffi
2
p sgnBx;0;�

ffiffiffiffi
q
2

r
bz;�

ffiffiffiffi
q
2

r
by;0

� �T

;

l3;6
x ¼ 0;�ascs

2c2 ;�
af

2c2 cf bysgnBx;�
af

2c2 cf bzsgnBx; 0;�
af

2
ffiffiffiffiqp c

by;�
af

2
ffiffiffiffiqp c

bz;
as

2qc2

� �
;

r3;6
x ¼ qas;�ascs;�af cf bysgnBx;�af cf bzsgnBx; 0;�af

ffiffiffiffi
q
p

cby;�af
ffiffiffiffi
q
p

cbz;ascp
	 
T

;

l4
x ¼ 1;0;0;0;0; 0;0;� 1

c;2

� �
;

r4
x ¼ ð1;0; 0;0;0;0;0;0Þ

T
;

l5
x ¼ ð0;0;0;0;1;0; 0;0Þ;

r5
x ¼ ð0; 0;0; 0;1;0;0;0Þ

T
:

4. A numerical scheme

To solve (10) we apply a conservative difference scheme:
Unþ1
i;j;k ¼ Un

i;j;k �
s
Dx

Fnþ1=2
iþ1=2;j;k � Fnþ1=2

i�1=2;j;k

� �
� s

Dy
Gnþ1=2

i;jþ1=2;k � Gnþ1=2
i;j�1=2;k

� �
� s

Dz
Hnþ1=2

i;j;kþ1=2 �Hnþ1=2
i;j;k�1=2

� �
: ð18Þ
Half-integer indices such as iþ 1=2 denote the boundaries of grid cells, half-integer time index nþ 1=2 means that we use
the averaged values of the fluxes over a time step s in order to get a second-order temporal accuracy.

The solution inside every grid cell is approximated by a parabola along any Cartesian grid axis. The boundary values for
each parabola are determined from a conservation property of Riemann invariants that remain constant along the charac-
teristics of the initial linearized system of equations. Parabolae must be built using the primitive variables (16), so we need
to consider a non-conservative form of the MHD equations (15).

We can expand A;B and C in (15) into their eigenvectors. For example, for the x-direction:
A ¼ RxKxLx; ð19Þ
where Rx is a matrix with columns filled by the right eigenvectors rp
xðp ¼ 1; . . . ;8Þ; Lx ¼ R�1

x is an inverse matrix, with rows
filled by the left eigenvectors lp

x . Kx is a diagonal matrix of the eigenvalues: ðKxÞij ¼ 0 for i – j; ðKxÞij ¼ kp for i ¼ j ¼ p.
To construct piecewise parabolae for every time step, one needs to define the states on the cell edges and the states at

their centers. For simplicity, let us further consider a 1D case:
@tVðx; tÞ þ A@xVðx; tÞ ¼ 0: ð20Þ
Inserting (19) into (20) and multiplying by the L matrix from the left, we arrive at
L@tV þKL@xV ¼ 0: ð21Þ
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Let us expand a vector Vðx; tÞ into the local basis of the right eigenvectors rp, which are fixed in every cell:
Vðx; tÞ ¼
X

p

apðx; tÞrp: ð22Þ
Inserting (22) into (21), we arrive at
@tap þ kp@xap ¼ 0; p ¼ 1; . . . ;8: ð23Þ
Eq. (23) mean that the coefficients apðx; tÞ in the expansion (22) (the wave amplitudes) must be constant along the charac-
teristics xpðtÞ:
dxp

dt
¼ kp;
i.e. apðx; tÞ are Riemann invariants. A value of Riemann invariant on the boundary of a cell ðx ¼ xiþ1=2Þ at the moment t þ s
could be computed using its value at the moment t as
apðxiþ1=2; t þ sÞ ¼ apðxiþ1=2 � kps; tÞ: ð24Þ
Fig. 3 shows two adjacent cells i and iþ 1. The characteristics in the cell i have index p1, in the cell iþ 1 – index p2. One of
the characteristics xp1 ðtÞ with the eigenvalue kp1 > 0 is shown in the cell i, another one xp2 ðtÞ with the eigenvalue kp2 < 0 is
shown in the cell iþ 1. According to (24) the amplitude of a wave at point 3, which propagates inside the cell i along the
characteristic xp1 ðtÞwith the eigenvalue kp1 , is equal to its value at point 1. In the same way the amplitude of a wave at point
3, which propagates inside the cell iþ 1 along the characteristic xp2 ðtÞ, is equal to its value at point 2.

The state at point 3, which is computed according to (22) by summation with respect to all the eigenvectors, fixed in cell i,
with kp1 > 0 will be on the left side of the interface. Let VL denote this value. Similarly, let VR denote the state at point 3 on
the right side of the interface which is computed by summation with respect to all the eigenvectors fixed in cell iþ 1, with
kp2 < 0.

The amplitudes of waves apðxp; tÞ at the point xp ¼ xiþ1=2 � kps in (24), which influence the right boundary of cell iðkp > 0Þ,
can be computed by multiplying the expansion (22) by the left eigenvectors, fixed in cell i:
apðxp; tÞ ¼ lp Vðxp; tÞ; kp > 0; ð25Þ
where
VðxpÞ � 1
xiþ1=2 � xp

Z xiþ1=2

xp
VðxÞdx: ð26Þ
We can use arbitrary values for the wave amplitudes for kp < 0 because these waves have no effect on the right boundary
of the cell and will be omitted in the sum (22). For convenience let them be
apðxp; tÞ ¼ lp Vðxi; tÞ; kp < 0: ð27Þ
With the help of H-function we can rearrange (25)–(27) as
apðxp; tÞ ¼ HðkpÞðlpVðxp; tÞÞ þ ð1�HðkpÞÞðlpVðxi; tÞÞ: ð28Þ
Multiplying (28) by rp and summing over all p such as kp > 0 according to (22), after some simple manipulations we obtain
the boundary value at time t þ s:
VLðxiþ1=2; t þ sÞ ¼ Vðxi; tÞ þ
X

pðkp>0Þ
rp½lpðVðxp; tÞ � Vðxi; tÞÞ�: ð29Þ
Fig. 3. The characteristics in the adjacent cells for kp1 > 0 and kp2 < 0.
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If we consider cell iþ 1 and waves with kp < 0 we will obtain a similar expression for the value VR on the right side of the
interface at time t þ s:
VRðxiþ1=2; t þ sÞ ¼ Vðxiþ1; tÞ þ
X

pðkp<0Þ
rp½lpðVðxp; tÞ � Vðxiþ1; tÞÞ�: ð30Þ
The left and the right eigenvectors in (29) and (30) are fixed in every cell. To compute them we can use a state from any
point x inside the cell – it has been shown by numerical experiments that this choice has no influence on the solution. We
suggest using the values of states in the centers of the cells, i.e. lp ¼ lpðVðxi; tÞÞ.

A possible approximation of the component VðxÞ of the vector-function Vðx; tÞ inside grid cells i and iþ 1 at some time
step is shown in Fig. 4. The arrows point to the values on the left and the right sides of the interface, note that VL – VR.
The dotted lines are the average values of VðxÞ:
Vi ¼
1
Dx

Z xiþ1=2

xi�1=2

VðxÞdx:
In order to solve the 3D problem we split the initial set (15) by the space variables and solve the 1D equations separately
for the x-, y- and z-directions. However, in this case we have an additional change in the quantities because of the fluxes in
the orthogonal directions. For example, a flux in the y-direction will affect the quantities at point 1 between cells ði; jÞ and
ðiþ 1; jÞ (see Fig. 5). To obtain the correct result, we can solve Eq. (15) in the x-direction considering the terms B@yV and C@zV
as sources. Then instead of (23) we arrive at
@tap þ kp@xap ¼ �Dp; p ¼ 1; . . . ;8; ð31Þ
where Dp are the components of the vector
D ¼ LxðB@yVÞ þ LxðC @zVÞ: ð32Þ
The components of the partial derivatives in (32) can be calculated as
@yVp ¼
Vp

i;jþ1=2;k � Vp
i;j�1=2;k

Dy
: ð33Þ
The solution of (31) can be obtained from a Taylor series expansion of apðx; tÞ near the boundary x ¼ xiþ1=2. It is similar to (24)
but has the additional term
Fig. 4. Approximation of VðxÞ in the adjacent cells.

Fig. 5. A 2D mesh.
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apðxiþ1=2; t þ sÞ ¼ apðxiþ1=2 � kps; tÞ � DpðtÞ s
2
: ð34Þ
Then instead of (29), (30) we arrive at
VLðxiþ1=2; t þ sÞ ¼ Vðxi; tÞ þ
X

pðkp>0Þ
rp lp Vðxp; tÞ � Vðxi; tÞ � DpðtÞ s

2

� �h i
; ð35Þ

VRðxiþ1=2; t þ sÞ ¼ Vðxiþ1; tÞ þ
X

pðkp<0Þ
rp lp Vðxp; tÞ � Vðxiþ1; tÞ � DpðtÞ s

2

� �h i
: ð36Þ
In (34)–(36) we have omitted indices j and k. The state at point 2 on Fig. 5 is computed in a similar way considering the x-
derivative as a source.

To obtain states Viþ1=2 in PPML, we solve the Riemann problem for the VL and VR states on every interface using, e.g. the
Roe solver [21] or the HLLD solver [22]:
Viþ1=2 ¼ RðVL;VRÞ; ð37Þ
where R is the Riemann solver. Note, that in the original PPM, the states Viþ1=2 are obtained through monotonic interpolation
[7]. We then apply a monotonicity- and extrema-preserving procedure proposed by Rider et al. [14] to the values of Viþ1=2, as
described in Section 6. Finally, we modify the resulting interface states with the standard PPM monotonicity procedure (5),
(6).

So far we have obtained the boundary values of piecewise parabolae at time t þ s in each grid cell. Now we need to define
the fluxes to compute the new central states. Again we can use the Roe solver [21] or the HLLD solver [22] with VL and VR

from (35), (36) but in this case the numerical scheme will have the first order of temporal accuracy. To design a second order
scheme, we must average the amplitudes apðx; tÞ over the zones of influence.

Fig. 6 shows a set of characteristics corresponding to waves with kp > 0. The characteristic x1ðtÞ has the maximum eigen-
value k1. Point 1 is the point of intersection between this characteristic and the piecewise parabola at time t. Obviously, only
the zone between the interface x ¼ xiþ1=2 and point 1 affects the left boundary state at point 2.

If we consider a wave which propagates along the characteristic with kp > 0 inside cell i, its averaged amplitude on the
interface x ¼ xiþ1=2 at time t þ s can be calculated as
�ap
iþ1=2 ¼

1
kps

Z xiþ1=2

xiþ1=2�kps
apðxÞdx; kp > 0: ð38Þ
Multiplying the expansion (22) by the left eigenvectors, fixed in cell i, will yield
apðxÞ ¼ lpVðxÞ; kp > 0: ð39Þ
Inserting (39) into (38) and removing the factor lp from the integral, we arrive at
�ap
iþ1=2 ¼ lpVL;p

iþ1=2;

VL;p
iþ1=2 ¼

1
kps

Z xiþ1=2

xiþ1=2�kps
VðxÞdx; kp > 0:

ð40Þ
After that we can arrive at
VL ¼ VL;1
iþ1=2 þ

X
pðkp>0Þ

rp lp VL;p
iþ1=2 � VL;1

iþ1=2 � Dp s
2

� �h i
; ð41Þ
Fig. 6. Characteristics inside a grid cell.
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which is similar to (35). Here VL;1
iþ1=2 is the averaged by formula (40) solution VðxÞ at time t over the zone of influence of the

wave in cell i, corresponding to the maximum eigenvalue ðk1 > 0Þ.
For cell iþ 1 and the negative eigenvalues we arrive at
VR ¼ VR;1
iþ1=2 þ

X
pðkp<0Þ

rp lp VR;p
iþ1=2 � VR;1

iþ1=2 � Dp s
2

� �h i
; ð42Þ

VR;p
iþ1=2 ¼

1
jkpjs

Z xiþ1=2�kps

xiþ1=2

VðxÞdx; kp < 0: ð43Þ
To get the second order of accuracy for time we must compute fluxes on every interface solving the Riemann problem with
VL and VR from (41), (42). Note that the values of components of the integrals (40) and (43) can be computed as (7) and (8),
respectively.

The time step s in (18) is obtained from the Courant condition
s ¼ r min
i;j;k

Dx
jui;j;kj þ cx

f i;j;k

;
Dy

jv i;j;kj þ cy
f i;j;k

;
Dz

jwi;j;kj þ cz
f i;j;k

( )
; ð44Þ
where r is the Courant number and cx
f ; c

y
f , and cz

f are the fast magneto-acoustic velocities along the coordinate directions.

5. Zero divergence constraint for the magnetic field

Our numerical method must provide numerical solutions that satisfy a condition
divB ¼ 0: ð45Þ
There are several approaches to this problem in the literature [18,23–25,17,26]. In our numerical scheme we used an unsplit
Godunov method for ideal MHD with a constrained transport developed in [18] that is based on the Stokes theorem
@B
@t
¼ �r	 E: ð46Þ
Calculated from (46) the magnetic field obviously satisfies condition (45). To apply the Stokes theorem in 3D case, we define
the magnetic field components on the cell faces and the electric field components on the cell edges. The algorithm exploits
the fact that some components of the fluxes F;G and H are actually the components of the electric field.

For simplicity let us consider a 2D case. Thus the sixth component of the flux F is the z-component of the electric field
reversed in sign, which correspond to the left and right boundaries of a cell. The fifth component of the flux G is the z-com-
ponent of electric field, which correspond to the top and bottom boundaries of a cell. Computing Taylor series for these com-
ponents near the nodes of the mesh and averaging them, we obtain the components of the electric field at the nodes (Fig. 7).
Ez iþ1=2;jþ1=2 ¼
1
4

Eleft
z iþ1=2;jþ1=2 þ Eright

z iþ1=2;jþ1=2 þ Etop
z iþ1=2;jþ1=2 þ Ebottom

z iþ1=2;jþ1=2

� �
;

where for example
Fig. 7. Computation of the component Ez at a node.
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Eleft
z iþ1=2;jþ1=2 ¼ Ez i;jþ1=2 þ

@Ez

@x

����
i;jþ1=2

Dx
2
;

@Ez

@x

����
i;jþ1=2

¼

@Ez
@x

	 

i;j; v i;jþ1=2 > 0;

@Ez
@x

	 

i;jþ1; v i;jþ1=2 < 0;

1
2

@Ez
@x

	 

i;j þ

@Ez
@x

	 

i;jþ1

h i
; v i;jþ1=2 ¼ 0:

8>>><
>>>:
These values of Ez iþ1=2;jþ1=2 are used in a discrete version of (46):
Bnþ1
x iþ1=2;j ¼ Bn

x iþ1=2;j �
s
Dy

Ez iþ1=2;jþ1=2 � Ez iþ1=2;j�1=2
	 


;

Bnþ1
y i;jþ1=2 ¼ Bn

y i;jþ1=2 þ
s
Dx

Ez iþ1=2;jþ1=2 � Ez i�1=2;jþ1=2
	 


:

Updated components of magnetic field at the center of ði; jÞ-cell are computed by averaging:
Bnþ1
x i;j ¼

1
2

Bnþ1
x i�1=2;j þ Bnþ1

x iþ1=2;j

� �
;

Bnþ1
y i;j ¼

1
2

Bnþ1
y i;j�1=2 þ Bnþ1

y i;jþ1=2

� �
:

The magnetic field computed this way will automatically satisfy (45). To make sure that this is indeed the case, divB
should be approximated by the following expression:
ðdivBÞiþ1=2;jþ1=2 ¼
1

2Dx
Bx iþ1;j þ Bx iþ1;jþ1 � Bx i;j � Bx i;jþ1
	 


þ 1
2Dy

By i;jþ1 þ By iþ1;jþ1 � By i;j � By iþ1;j
	 


:

6. Monotonicity constraints

A standard PPM monotonicity preserving procedure (5) and (6) is insufficient for the ideal MHD case. We need to use
additional procedures to suppress spurious oscillations.

Procedure 1. To keep a solution monotonic without reducing the order of the scheme and to preserve all the local extre-
ma in MHD simulations we can follow a number of approaches described in the literature [12–15]. In our method we rely on
a Piecewise Parabolic Accurate Monotonicity- and Extrema-Preserving procedure described in [14].

We compute the wave amplitudes ap
i for the central states Vi and ap

i�1=2 for the interface states Vi�1=2. We then calculate
new values for wave amplitudes of the interface states:
ap;�
i�1=2 ¼medianðap

i ;a
p
i�1=2;a

p
i�1Þ
and
ap;��
i�1=2 ¼medianðap

i ;a
p;�
i�1=2;3ap

i � 2ap;�
i�1=2Þ;
where the median function is defined in a usual way
medianða; b; cÞ ¼ aþminmodðb� a; c � aÞ
through the minmod function
minmodða; bÞ ¼ 1
2
ðsignðaÞ þ signðbÞÞminðjaj; jbjÞ:
If ap;��
i�1=2 ¼ ap

i�1=2 for all p, the procedure is completed. Otherwise, we compute a set of fifth-order WENO interface values
ap

i�1=2;�, using Algorithm 2.2.4 from [14], and check for a local extremum. If ap;��
i�1=2 ¼ ap

i for all p, we apply Algorithm 2.1.2,
4(b), otherwise the region is monotonic but too steep to be approximated with the values obtained from the Riemann solver
(37) and we apply Algorithm 2.1.2, 4(c).

Procedure 2. To keep a solution monotonic in a multidimensional case, we employ a method proposed in [16].
Let us consider a 2D case for simplicity. A parabola that approximates a solution along the x-axis for every component

VðxÞ of a state Vðx; tÞ at some point in time can be defined as
VðxÞ ¼ Vi;j þ /ðVÞ si;jðx� xiÞ þ
ri;j

2
ðx� xiÞ2 �

Dx2

12

� �� �
;

where
si;j ¼
Viþ1=2;j � Vi�1=2;j

Dx
; ri;j ¼ 6

Viþ1=2;j � 2Vi;j þ Vi�1=2;j

Dx2 :
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As a limiting function /ðVÞ we can use that described in [16]:
/ðVÞ ¼min 1;
jVi;j �maxðVl;mÞj

jVi;j �maxðVi�1=2;j;Viþ1=2;j;Vi;j�1=2;Vi;jþ1=2Þj
;

jVi;j �minðVl;mÞj
jVi;j �minðVi�1=2;j;Viþ1=2;j;Vi;j�1=2;Vi;jþ1=2Þj

� �
; ð47Þ
where l ¼ i� 2; i� 1; i; iþ 1; iþ 2;m ¼ j� 2; j� 1; j; jþ 1; jþ 2 except ðl;mÞ ¼ ði; jÞ. In a 3D case, the limiting function (47)
must include all the neighbors of the cell ði; jÞ.

7. A FORTRAN implementation

The algorithm for computing the left and the right boundary values VL and VR (35) and (36) could be implemented in
FORTRAN this way:

integer n, n2

real dt, dx

real VL(8), VC(8), VR(8), Vm(8), V(8), D(8), dVy(8)

real Lambda(8), sumL(8), VLnew(8), VLinterface(8)

real B(8,8), L(8,8), R(8,8)

call Eigenvalues(VC,Lambda) ! compute the eigenvalues at the center of the
! cell i (VC – a state in the center)

if (Lambda(1).gt.0.) then ! if k1 > 0 then compute a new state VLnew

! on the left side of the interface between the
! cells i and iþ 1

VLnew=0.

xi=1.- Lambda(1)*dt/dx ! n in (1) for k1 (see (4))
call Vxi(xi,VL,VC,VR,Vm) ! formula (1); VL, VR – the left and the right

! boundary values of a parabola, Vm – the result
call MatrixB(VC,B) ! compute the matrix B
call Vectors(VC,L,R) ! compute the left (L) and right (R) eigenvectors
D=0.

do n=1,8

do n2=1,8

D(n)=D(n)+B(n,n2)*dVy(n2)/dy ! ðBp @yVpÞ (see (32) and (33))
enddo

enddo

D=D*dt/2.

sumL=0.

do n=1,8

if (Lambda(n).gt.0.) then ! only these waves affect the interface
xi=1.- Lambda(n)*dt/dx ! n in (1) for kp

call Vxi(xi,VL,VC,VR,V) ! V – the result (a state at the point n)
do n2=1,8

sumL(n)=sumL(n)+L(n,n2)*(V(n2)-Vm(n2)-D(n2)) ! a part of (35)
enddo

do n2=1,8

VLnew(n2)=VLnew(n2)+R(n2,n)*sumL(n) ! a part of (35)
enddo

end if

enddo

VLnew=Vm+VLnew ! the result for (35)
else ! if the maximum eigenvalue k1 < 0
VLnew= VLinterface ! we keep the old value on the left side of the interface

end if

A FORTRAN code for computing VL and VR is similar. We only need to replace the function call call Vxi(xi, . . .) with
one that computes the integral (7) or (8), using
xi ¼ Lambdað1Þ � dt=dx
or
xi ¼ �Lambdað8Þ � dt=dx;
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respectively. Lambda(8) is the maximum absolute value of the negative eigenvalue.
To obtain a monotonic solution for a 3D MHD problem, we suggest using the following algorithm:

1. Compute the average interface states VL and VR from (41) and (42).
2. Solve Riemann problem between VL and VR to determine the fluxes.
3. Use a conservative difference scheme (18) to compute new central states.
4. Modify the magnetic field at the centers accordingly, see Section 5.
5. Compute the interface states VL and VR from (35) and (36).
6. Solve Riemann problem between VL and VR to determine the new interface states.
7. Apply procedure 1 in x-direction (Section 6).
8. Apply procedure 1 in y-direction (Section 6).
9. Apply procedure 1 in z-direction (Section 6).

10. Apply procedure 2 (Section 6).
11. Apply PPM procedure (5) and (6).

Note that only the interface states are modified by the monotonicity preserving procedures. The solution of the Riemann
problem joins the interface values, but the monotonicity procedures split them again into the left and right values.

8. Numerical tests

8.1. Riemann problem with multiple weak discontinuities

This is a 1D problem from [27]. An interval x 2 ½0 � � �1� is divided in two by x ¼ 0:5. The left and the right states at the
initial moment are defined as
ðqL;uL;vL;wL; BL
y; B

L
z; p

LÞ ¼ ð1:08;1:2;0:01; 0:5;3:6;2;0:95Þ;
ðqR;uR;vR;wR;BR

y ;B
R
z ;p

RÞ ¼ ð1; 0;0; 0;4;2;1Þ;
Bx ¼ 2; c ¼ 5=3;N ¼ 512. The solution involves two fast shocks with Mach numbers 1.22 and 1.28, two slow shocks with
Mach numbers 1.09 and 1.07, two rotational and one contact discontinuities. The solution for the moment t ¼ 0:2 is pre-
sented in Figs. 8–10. The solid line represents the exact solution and points represent the numerical one. PPML produces very
sharp fronts resolved with only a few grid points.

8.2. Numerical dissipation and decay of Alfvén waves

Numerical calculations on a discrete grid always lead to energy loss due to numerical dissipation. In order to estimate the
properties of numerical dissipation of the PPML ideal MHD scheme, we used the test problem from [28] and followed a decay
of two-dimensional Alfvén wave. We used a standing wave propagating along the grid diagonal with initial conditions
dvx ¼ vamp ca sinðkxxþ kyyÞ;
dq ¼ dp ¼ dvx ¼ dvy ¼ dBx ¼ dBy ¼ dBz ¼ 0
Fig. 8. Riemann problem with multiple weak discontinuities. Density and pressure distributions.



Fig. 9. Same as in Fig. 8 but for y- and z-components of the magnetic field.

Fig. 10. Same as in Fig. 8 but for x- and y-components of the velocity.
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in a stationary background flow with q0 ¼ 1; p0 ¼ 1;Bx ¼ 1;By ¼ Bz ¼ 0. This gives the sound speed c ¼ 1:291 and the Alfvén
velocity ca ¼ 0:7071. The computational domain is a square box with size L ¼ 1 divided into 64	 64 grid cells. The wave-

numbers kx ¼ ky ¼ 2p=L, the total wave number k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
¼

ffiffiffi
2
p
ð2p=LÞ, the initial peak amplitude vamp ¼ 0:1, adiabatic

exponent c ¼ 5=3. Computations were carried out with a Courant number r ¼ 0:4. We used the periodic boundary
conditions.

Fig. 11 shows the envelope for the maxima of z-component of the magnetic field and velocity obtained with PPML and
PPM reconstruction procedures as a function of time. While both schemes show very low dissipation, PPML dissipation is
even smaller than that of PPM.

8.3. Travelling circularly polarized Alfvén wave problem

This problem was suggested in [23] as a test for numerical accuracy of smooth flow solutions. The circularly polarized
Alfvén wave propagates at an angle of a ¼ 30
 with respect to an axis x in the domain ½0;1= cosa� 	 ½0;1= sin a�. The initial
conditions are
q ¼ 1; vk ¼ 0; v? ¼ 0:1 sinð2pnÞ; w ¼ 0:1 cosð2pnÞ;
Bk ¼ 1; B? ¼ 0:1 sinð2pnÞ; Bz ¼ 0:1 cosð2pnÞ; p ¼ 0:1;
where n ¼ x cos aþ y sin a. For convenience the parallel and the orthogonal to the direction of Alfvén wave propagation com-
ponents of the velocity and the magnetic field are used instead the of the components u;v ;BxBy. For example



Fig. 11. Decay of Alfvén waves. The maximum values of Bz and vz as a functions of time.
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Bk ¼ Bx cosaþ By sin a;B? ¼ By cosa� Bx sin a. Alfvén wave travels to the point ðx; yÞ ¼ ð0;0Þ with the velocity Bk=
ffiffiffiffiqp ¼ 1.

Note that the wave becomes standing if vk ¼ 1.
The problem was solved on a set of rectangular N 	 2N meshes with N ¼ 8;16;32 and 64. The averaged relative numerical

errors were estimated as
dNðUÞ ¼
PN

i¼1

P2N
j¼1jU

N
i;j � UE

i;jjPN
i¼1

P2N
j¼1jU

E
i;jj

; for U ¼ v?;w;B?;Bz; ð48Þ
where the solution on the mesh N ¼ 128 regarded as the exact one UE
i;j. The rate of convergence was calculated as follows
RN ¼ log2ðdN=2=dNÞ; ð49Þ
where dN is an averaged value:
dN ¼
1
4
ðdNðv?Þ þ dNðwÞ þ dNðB?Þ þ dNðBzÞÞ: ð50Þ
Fig. 12. The orthogonal component B? in travelling Alfvén wave in computations on meshes with N ¼ 8;16;32 and 64.





Table 2
The rotor problem. The average relative errors and the rates of convergence in the numerical codes at t ¼ 0:15.

N PPML Flash3 USM-MEC

�dN RN �dN RN

50 9:4274	 10�2 – 1:1470	 10�1 –

100 4:5204	 10�2 1.06 5:9800	 10�2 0.94

200 1:9262	 10�2 1.24 2:5000	 10�2 1.26
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The computational domain in this case is a square ½0;1� 	 ½0;1� with a uniform pressure p ¼ 1 and magnetic field compo-
nents Bx ¼ 5=

ffiffiffiffiffiffiffi
4p
p

;By ¼ 0. There is a rotating disk of dense fluid at the center with a radius r0 ¼ 0:1. For r < r0 we specify

q ¼ 10;u ¼ �v0ðy� 0:5Þ=r0;v ¼ v0ðx� 0:5Þ=r0, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
; v0 ¼ 2. For r > r1 ¼ 0:115 the fluid is ini-

tially at rest ðu ¼ v ¼ 0Þ with density q ¼ 1. In the intermediate zone r0 < r < r1 we use a linear interpolation of the vari-
ables: q ¼ 1þ 9f ;u ¼ �fv0ðy� 0:5Þ=r;v ¼ f v0ðx� 0:5Þ=r; f ¼ ðr1 � rÞ=ðr1 � r0Þ. In this setup, the initial configuration is
imbalanced due to centrifugal forces. The rotating fluid will tend to equilibrate, while the magnetic field holds the oblate
shape of the rotor.

The computations were carried out on a set of N 	 N meshes with N ¼ 50, 100, 200 and 400, with a Courant number
r ¼ 0:4 and c ¼ 1:4 until t ¼ 0:15. The boundary conditions are obtained through zero-order interpolation. Figs. 13 and
14 show the flow fields for N ¼ 400.

We compare numerical solutions obtained with PPML with those presented in [23,29,30]. In Table 2 the average relative
numerical errors and the rates of convergence are given for PPML and for Flash3 USM-MEC (unsplit staggered mesh algo-
rithm with modified electric field construction introduced in [30]). Both PPML and Flash3 USM-MEC codes use a Roe solver
[21] for this test. The relative numerical errors were computed using Eq. (48), where for UE

i;j we used the highest resolution
result ðN ¼ 400Þ. The average error �dNðUÞ is defined as the average dNðUÞ for all non-zero variables U. The rate of convergence
is estimated as in (49). PPML results are more accurate and have a comparable rate of (self-)convergence with those from the
new Flash3 MHD solver.

8.5. Orszag–Tang vortex problem

This problem was suggested in [31] and since then has been used in many papers as a standard test problem for numer-
ical codes in 2D MHD. It involves formation and an interaction of multiple shocks and a transition to supersonic turbulence.

In the computational domain ½0;1� 	 ½0;1�, we set a uniform density q ¼ 25=ð36pÞ and pressure p ¼ 5=ð12pÞwith c ¼ 5=3
(in this case the sound velocity c ¼

ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
¼ 1). The initial velocities and components of the magnetic field are set using har-

monic functions: u ¼ � sin 2py;v ¼ sin 2px;w ¼ 0;Bx ¼ �B0 sin 2py;By ¼ B0 sin 4px;Bz ¼ 0, where B0 ¼ 1=
ffiffiffiffiffiffiffi
4p
p

. Despite such
smooth initial conditions the fluid motion becomes very complex.
Fig. 15. Orszag–Tang vortex problem. The contours represent 30 levels of pressure equally spaced in the range from 0.02 to 0.5 at t ¼ 0:5.
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We carried out computations on N 	 N meshes with several values of N using periodic boundary conditions and a Courant
number r ¼ 0:3. Fig. 15 demonstrates the pressure distribution at time t ¼ 0:5 for N ¼ 256. In Fig. 16 the pressure distribu-
tions along the lines y ¼ 0:3125ðj ¼ 83Þ and y ¼ 0:4277ðj ¼ 112Þ are shown to illustrate the accuracy and sharpness of the
main flow features.

Table 3 contains the average relative numerical errors and the rates of convergence for PPML and Flash3 USM-MEC [30]
solvers at t ¼ 0:5. As an ‘‘exact” solution UE

i;j, we used a solution obtained on the grid with N ¼ 400. The corresponding PPML
results are more accurate and demonstrate better convergence.

9. A compressible turbulence simulation

Magnetized supersonic turbulence plays an important role in statistical star formation theories [35]. This stimulated
development of accurate numerical methods suitable for modeling turbulent molecular clouds. One of the motivations be-
hind the design of PPML has been a need for an MHD scheme with low numerical dissipation comparable or better than that
of PPM. In this section we illustrate the performance of PPML on a challenging problem of forced super-Alfvénic turbulence.
Some numerical methods that successfully pass the tests discussed above turn unstable on this application. Since adding
more dissipation where needed – the usual way to cure for ‘‘blow ups” caused by numerical instabilities – would ultimately
damage the derived statistics of turbulence [33], the issue of inherent stability of numerical methods is crucial for both
supersonic turbulence and star formation simulations.

For illustrative purposes, we present here a simulation of weakly magnetized supersonic turbulence. In this experiment,
turbulence in a periodic domain of linear dimension L ¼ 1 is driven by a large-scale solenoidal force for 8 flow-crossing times
td � L=2Ms. At time t ¼ 0, a uniform gas with density q � 1 is permeated by a weak uniform magnetic field B0kx, such that
b0 � 2p=B2

0 ¼ 20. We apply an initial large-scale velocity field that corresponds to an rms sonic Mach number Ms � 10 and
assume an isothermal equation of state ðc � 1Þ to mimic the average physical conditions in the dense parts of molecular
clouds ðn ¼ 103 cm�3; T ¼ 10 KÞ.

The evolution begins with the formation of strong shocks on ‘‘caustics” of the initial velocity field. Shock interactions
then cascade the initial kinetic energy of large-scale motion of the gas down to smaller and smaller scales á la
 RN50

8:9095	10�.32– 1:0160

	10�.31–1004:4249	10�.321.0135:2200	10�.32  -9642001:8851	10�.321.2351:9900	10�.321.390



Fig. 17. Supersonic turbulence simulation with PPML on a 5123 grid. Four snapshots show the density field on a slice x � 0 illustrating a transition to fully
developed turbulence with Ms � MA � 10. The transition includes formation of first strong shocks on the caustics of the initial solenoidal velocity field
(t ¼ 0:5td , top-left), shock interactions and active development of first shear instabilities (t ¼ 1td , top-right), and a gradual transition to a statistical steady
state (t ¼ 2td and 4td , bottom row). The standard logarithmic black–red–white color ramp shows high-density regions in light-red and rarefactions in black.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Supersonic turbulence simulation with PPML on a 5123 grid. Time-evolution of kinetic and magnetic energy and maximum absolute value of $ � B
(left panel) and turbulent power spectra for the velocity, density and magnetic field (right panel).
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Kolmogorov–Richardson, see Fig. 17. The rms magnetic field gets amplified by a factor of about 50 via a combination of com-
pression in shocks (flux freezing) and the small-scale dynamo action [34]. The large-scale solenoidal force (acceleration)
keeps the rms sonic Mach number roughly constant at Ms � 10. The evolution of kinetic and magnetic energies is shown
in Fig. 18, left panel. Also shown is maxðj$ � BjÞ as a function of time during this simulation. The method keeps the absolute
value of the divergence of magnetic field below 10�12 at all times, even after 70,000 integration time steps (if double preci-
sion is used). After about 4 crossing times of evolution, the system completes a transition to a fully developed isotropic state
with Ms � 10 and MA � 10. The right panel of Fig. 18 illustrates spectral characteristics of this saturated state by showing the
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time-average (over 25 flow snapshots taken between t ¼ 4td and t ¼ 8td) power spectra for the density, velocity, and
magnetic field strength.

The velocity spectrum has an extended scaling range with a slope of about �2, as in the Burgers turbulence, similar to the
corresponding scaling in non-magnetized flows at high Mach numbers [32]. This is expected, as turbulence here is only
weakly magnetized. The density spectrum slope of about �0.7 is again consistent with our previous results for non-magne-
tized flows obtained with PPM (�1.0 at Ms ¼ 6) and with an anticipated trend towards a flat ‘‘white noise” spectrum at
Ms ¼ 1. The magnetic energy spectrum does not show a clear scaling range, as expected at this modest resolution, assuming
the effective magnetic Prandtl number of PPML is of order unity. We also looked at more advanced spectral characteristics
for compressible flows, such as the power spectrum of q1=3v, and found a slope of �1.7. This power spectrum related to the
energy transfer rate in wavenumber space is insensitive to the turbulent Mach number and should have a Kolmogorov �5/3
slope [32] in both incompressible and highly compressible regimes, although a steeper scaling does occur due to intermit-
tency [36]. This is true for both non-magnetized and weakly magnetized flows.

We have also carried out two additional simulations of the same kind but with higher degrees of magnetization, b0 ¼ 2
and 0.2 [37]. While the saturated turbulent state in the b0 ¼ 2 variant is still super-Alfvénic with MA � 3 and the magnetic
energy is about 3 times smaller than the kinetic energy, the trans-Alfvénic case, b0 ¼ 0:2, reaches an equipartition of kinetic
and magnetic energies. In both cases, PPML proved to be perfectly stable at a Courant number r ¼ 0:2, as in the super-Alfvé-
nic case b0 ¼ 20 discussed above.

Our approach to handle the stability issues in MHD turbulence simulations with PPML is as follows: (i) we use locally
multidimensional reconstruction that improves the quality of Right and Left interface states and helps to avoid numerous
well-known pathologies, such as ‘‘carbuncles”, etc. [38]; (ii) we control the quality of these states before moving forward
with the flux calculation; (iii) if we find that the states are not satisfactory, we reduce the order of reconstruction to linear
or further skip the whole reconstruction step; (iv) we use only nonlinear Riemann solver in all cases lacking the reconstruc-
tion step.

Overall, the derived spectral properties of weakly magnetized highly compressible turbulence demonstrate that low dis-
sipation and wide spectral bandwidth of PPML make it an ideal numerical scheme for large-scale simulations of magnetized
supersonic turbulence.

10. Conclusions

In this paper we presented PPML, a new numerical method for compressible ideal MHD that is based on the piecewise
parabolic approximation. Interface values for the interpolation parabolae in every grid cell are defined with the help of
the Riemann invariants which remain constant along the characteristics. The monotonicity of the states on the interfaces
between adjacent cells is provided by the monotonicity- and extrema-preserving procedure from [14]. The scheme is fully
multidimensional as it includes the terms corresponding to the tangential directions in the amplitude equations. This helps
to avoid numerous well-known pathologies, such as ‘‘carbuncles”, etc.

The states in the cell centers are defined by the conservative difference scheme (18). To obtain the second-order temporal
accuracy we must average the wave amplitudes over the corresponding domains of influence. To define the fluxes we need to
solve the Riemann problem between the states at the cell interfaces computed with the averaged amplitudes.

To preserve zero divergence of the magnetic field in three dimensions, we use an unsplit Godunov method based on the
constrained transport approach [18]. We use the information about the magnetic field gradients to fulfill the constraint on
the magnetic field more accurately.

We tested the performance of PPML on several numerical problems which demonstrated its high accuracy on both
smooth and discontinuous solutions. Two-dimensional flow fields generated by PPML are highly resolved without any wig-
gled contour lines. Our pilot simulations of supersonic magnetized turbulence in three dimensions with PPML show that low
dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.
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