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for stable execution. We describe PPML, a local stencil variant of the popular PPM algo-
rithm for solving the equations of compressible ideal magnetohydrodynamics. The princi-
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4711.B¢ reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved
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ature. The method is applied to numerical simulation of supersonic MHD turbulence,
which is important for many problems in astrophysics, including star formation in dark
molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbu-
lence in highly compressible isothermal gas in a molecular cloud model. The low dissipa-
tion and wide spectral bandwidth of this method make it an ideal candidate for direct
turbulence simulations.
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1. Introduction

Piecewise parabolic method on a local stencil (PPML) [1,2] is a new numerical scheme developed for solving multidimen-
sional compressible Euler (HD) and ideal magnetohydrodynamic (MHD) equations. The method is based on a piecewise par-
abolic approximation of variables inside individual grid cells. It is third order-accurate in space and it implies second order
temporal accuracy. This method is an improvement over the popular PPM introduced by Colella and Woodward [3,4] for
non-magnetized flows with strong shocks and extended by Dai and Woodward to compressible ideal magnetohydrodynam-
ics [5]. PPM has been widely used in computational practice ever since, and versions of the PPM gas dynamics scheme have
been incorporated into a number of codes for astrophysical applications [6].

The main new feature of PPML is the procedure for calculating interface values between adjacent cells. Instead of an inter-
polation procedure used in the original PPM formulation, which employs a four-point stencil, PPML relies on the information
preserved from a previous time step. The required values are obtained via Riemann invariants transferred along the
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characteristic curves of the equations to cell boundaries using an approximate parabolic solution within a cell [7-11]. To pre-
serve the order of the scheme at local extrema, a monotonicity constraint is applied to these interface values [12-15]. In a
multidimensional case a monotonicity preserving method from [16] is additionally applied. The scheme is multidimensional
as it keeps terms containing derivatives with respect to the tangential directions in the equations for wave amplitudes. This
approach provides the left and right states for the Riemann problem based on multidimensional reconstruction. For the ideal
MHD case in three dimensions, a zero-divergence constraint on the magnetic field is enforced by the use of the Stokes the-
orem (the so-called constrained transport approach [17]). An updated component of the electric field at a cell boundary is
calculated by averaging the quantities obtained from given components of flux-vectors, taking into account a value of the
electric field gradient and the information about the sign of the tangential velocity at that boundary [18].

PPML has been tested on a number HD and MHD problems that demonstrated the ability of the method to resolve dis-
continuous solutions without adding excessive dissipation. PPML provides a very accurate treatment of strong discontinu-
ities, minimizes numerical dissipation of the kinetic and magnetic energy, and substantially improves the spectral
bandwidth for compressible turbulence models compared to its predecessors [19].

In this paper we present a comprehensive description of the numerical method for 3D MHD simulations as well as results
of numerical tests. The method has been substantially improved and remastered compared to its previous version presented
in [1,2]. The new PPML features in this paper include: (i) an improved approach to maintaining zero divergence for the mag-
netic field following [18], see Section 5; (ii) a monotonicity constraint proposed by Rider et al. [14], as described in Section 6;
(iii) an extended suite of test problems that includes a comparison with the FLASH3 MHD solver, see Section 8; Finally, in
Section 9 we illustrate the performance of PPML on a three-dimensional problem of highly compressible weakly magnetized
forced turbulence with a sonic Mach number of 10. The problem of supersonic, super-Alfvénic turbulence with an isothermal
equation of state proved to be a challenging regime for numerical modeling due to the presence of strong rarefactions and
very high density contrasts in the flow. PPML scheme is perfectly stable numerically on problems of this sort. We also briefly
discuss the effects of the weak magnetic field on the spectral properties of MHD turbulence and obtain good correspondence
between our numerical results and observed characteristics of supersonic turbulence in star forming molecular clouds.

2. PPML description

Let us consider a homogeneous one-dimensional grid with the spacing h and a function q(x, ty) = q,(x) defined on this
grid at t = to. It is assumed that the function q,(x) can be approximated by a parabola inside every grid cell (Fig. 1):

o(x) = g} + E(Ag; + g7 (1 - &), (1)
where

E=@x-x1p)h", Aq=qt—d,

q® =6(q;, — 1/2(q} +qf)).

Function g; satisfies a condition

4 Xit1/2
g =h Go(x)dx.

Xi-1/2
Let us consider a linear advection equation

oq(x,t)  OF(x,t)
ot ox )

where F(x,t) = aq(x, t) and find its solution for the moment t = to + 7. On a discrete grid we have a number of local Riemann
problems which lead to some average states q*(x;.1/2, t) on every interface x;,1,, between the adjacent cells. Eq. (2) has only
one characteristic defined by dx/dt = a. To find a value g;,,,, for example, on the right boundary of a cell number i at the
time step t = to + 7, we suggest to move along the characteristic line from the point x;;,, back to the moment t = t, and
use a value from some point on a previous parabola (Fig. 2).

Then for a > 0 we have

X Xi Xis1/2

Fig. 1. Approximation of q(x) inside a cell.
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At

Xi_1/2 X X i+1/2

Fig. 2. A characteristic inside a grid cell (a > 0).

Qi1 p(to +T) = qR(to + T) = gF + E(AG + ¢ (1 - &), (3)
where
E=X—X1ph'=(h-ah' =1-ath". (4)

All the values in the rhs of (3) must be taken from a previous time step ¢ = t,. For a < 0 a value g, , is defined by a parabola
in the cell number i+ 1:

Qis12(to +7) = qiL+1 (to+71) = ql'L+1 + &(Agi 1 + q;i)l(l -9),

where ¢ = —ath™'.

In monotonic regions, where q;,,,, € [q; - - g;,4], it is assumed that qf = ¢, = q;,,/, and g = qf ; = g; ;5. In non-mono-
tonic regions we must redefine gt and gf. If g; is a local maximum or minimum, the interpolation function (1) must be con-
stant, i.e. gt = g} = g;. If g; is too close to g} or gf, the parabola (1) can have an extremum inside the grid cell (it happens when
|Agi| < g ]). In this case we must move this extremum to the boundary of the cell. These conditions can be written as

G=q, ¢¢=q, if(q—q)q-q)<0 (5)
and

¢t =3q,—2q%, if Ag;-q® > (Ag)’,

. (6)
qf =3q;—-2q}, if Agi-q < —(Agy)’*.
If we know the function q(x), we can compute its average for the interval [Xi.1,2 —¥---Xis1/2] (for y > 0):
) o e R -1 -1y (6)
Gi1pV) =Y qx)dx = q; — 1/2yh""[Aq; — (1 - 2/3yh™")q;”). (7
Xip127Y

For a > 0, the solution of (2) at time t =ty + 7 can be found by averaging over the interval [Xi.1, — atT,Xi;1.2), i.e.

q (Xiv12,t0+7) = qfﬂ/z = Fqlﬂl/z(a‘c). For a<O0 the =zone of influence is [Xi1,2,X412+0at]. In  this case
q*(Xiy12,t0+7T) = Qﬁuz = q§+1/2(_ar)' where

_ Xiv12HY B -

010 =y q()dx = qf; +1/2yh7 ' [Age., + (1 -2/3yh gy, v >0. (8)

Xiy1/2

The flux on the interface can be computed as

Fina =@ 5 + a7 G 9)
where a* = max(a,0) = (a + |a])/2,a” = min(a,0) = (a — |a|)/2. We can use an arbitrary value for qj,, , ifa < 0, and for qf, , ,
ifa> 0.

3. The governing equations
Let us consider the ideal MHD equations in 3D in the following form:
0U+ 0 F+0,G+0,H=0. (10)
Here U is a vector of eight conservative variables, F, G and H are the fluxes:

U:(pvpuvpyvasz\’vB}’szvE)Tv (11)
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F= (pu,pu2 +p - Bf,puy — BBy, puw — B,B,,0,uB, — vBy,uB, — wBx, u(E + p) — By(uBy + vB, + WBZ))T, (12)
G = (pv, puv — BBy, pv* +p — ijvw — ByB,, vB, — uB,,0, vB, — WB,, v(E + p) — By (uBy + vB, + WB,))", (13)
H = (pw, puw — ByB,, pvw — B,B,, pw? + P — Bf, wB, — uB;,wB, — vB,,0, w(E + p) — B,(uBx + vB, + wB,))", (14)

where p is the density; u, » and w are the velocity components; By, B, and B, are the magnetic field components; E is the total
energy and p is the total pressure:

BB
p=p+

We have included the factor 1/+v/4m in the definition of B. An equation for the total energy and an ideal gas equation of state
are

_ e PV BB
E=pe+ 5 +27
p=(-1pe,

where ) - the adiabatic index, ¢ - the specific internal energy. If we denote

1

(b, by, b,) = W(Bx,sy,gz), b* = b; + b + b,
we can write the sound velocity c, Alfvén velocity ¢,, the fast and the slow magneto-acoustic velocities ¢, as
r
- ®
o
CU = |bX‘s
1 5 .2, .1 d 2.2 2 P
Crs = E( +b )ii (€2 +b")" — 4c?b;

We will also deal with a non-conservative form of the MHD equations:

0V + AdxV + Bo,V + Co,V =0, (15)
where
V = (p,u,v,w,B,,B,,B,,p)". (16)
The matrices A, B and C can be computed using Jacobians of (10) and a transition matrix
m=20
For example, the Jacoby matrix A is
Ou 0 0 0 o0 o ot
0O uw 0 0 0 B/p BJp 1/p
0 0 u 0 0 -B/p O 0
0 0 O u 0 0 —By 0
A:ng—lﬁM: 00 0 0 u 0 o/p 0 & {an
0 B, -B, 0 O u 0 0
0 B, 0 -B, O 0 u 0
0w O 0 O 0 0 u

The corresponding eigenvalues are

45

2T —u+tc, N=utc, I

MW =u+tc, 2 =u

/+® represent a pair of fast magneto-acoustic waves, 227 - a pair of Alfvén waves, /2® - a pair of slow magneto-acoustic
waves, /i - an entropy wave, 22 - a magnetic-flux wave. The eigenvectors of the Jacobians could have singularities at the
points of degeneracy of the eigenvalues since the MHD equations are nonstrictly hyperbolic. To avoid those, Brio and Wu
[20] suggested a scaled version of the eigenvectors that comes from defining
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zﬁ& if B, + B} # 0,

+ Z
(ﬂy7 ﬁZ) = 1y .
g-; J3 % otherwise,
\/Cz 2 - )
g—p— if B2+ B2+ 0 or yp #B?
(95,%) = G- v '
’ =
- 1 1 i
55173 otherwise.

Thus the left and the right eigenvectors are

% Cy
22’3F22

L®= 0=+

Ols o4
SgnBX :F chﬁzsgnBM 72\/pcﬁy72\/pcﬁ272p—fc2 )

= POy, £ Cr, FOUsCs B, SENBy, F0UsCs f,58NBy, 0, 045/ pCPy, 05/ PCP,, o YD T

1
27— 00— Psgnp, P sgnp 0+ =8 0
V2 2p 2p

V2
B B o "o T
7 _ Pz y P
;7= 0,0,- 5 8nB, ZosgnB 0.1 6. F 34,0
36 Ofscs Oy
L° = 07 55 202 ,+ CfﬁySgnBX7 j: CfﬁzsgnBMO 2\/pcﬂy 2\/pCﬁZ7 chz )
1‘36 POs, £04sCs, 04 Cr B, SENBy, £04Cr f,58NBy, 0, —0p\/PCPy,, — 0/ PCP,, O /p ,

I = 1,0,0,0,0,0,0,—l2 :

X

! =(1,0,0,0,0,0,0,0)",
I =(0,0,0,0,1,0,0,0),
> =(0,0,0,0,1,0,0,0)".

4. A numerical scheme

To solve (10) we apply a conservative difference scheme:

Un+1 T Fn+1/2 n+1/2 Gn+]/2 Gn+1/2 T n+1/2 n+1/2 (18)

ijk — l]k KX i+1/24k — Ti-1/24k T y ij+1/2,k ij—1/2,k 7Aiz ijk+1/2 — “lijk-1/2 -

Half-integer indices such as i + 1/2 denote the boundaries of grid cells, half-integer time index n + 1/2 means that we use
the averaged values of the fluxes over a time step 7 in order to get a second-order temporal accuracy.

The solution inside every grid cell is approximated by a parabola along any Cartesian grid axis. The boundary values for
each parabola are determined from a conservation property of Riemann invariants that remain constant along the charac-
teristics of the initial linearized system of equations. Parabolae must be built using the primitive variables (16), so we need
to consider a non-conservative form of the MHD equations (15).

We can expand A, B and C in (15) into their eigenvectors. For example, for the x-direction:

A = ReALy, (19)

where R, is a matrix with columns filled by the right eigenvectors r(p = 1,...,8),L;, = R;l is an inverse matrix, with rows
filled by the left eigenvectors E. A, is a diagonal matrix of the eigenvalues: (Ax); =0fori#j, (Ay); =" fori=j=p.

To construct piecewise parabolae for every time step, one needs to define the states on the cell edges and the states at
their centers. For simplicity, let us further consider a 1D case:

ANV (x,t) + AdV(x, 1) = 0. (20)

Inserting (19) into (20) and multiplying by the L matrix from the left, we arrive at

LoV + ALOYV = 0. (21)
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Let us expand a vector V(x, t) into the local basis of the right eigenvectors r?, which are fixed in every cell:
X
V(x,t)=  of(x,0)r. (22)
p

Inserting (22) into (21), we arrive at
ocoP + PoP =0, p=1,...,8. (23)

Eq. (23) mean that the coefficients o (x, t) in the expansion (22) (the wave amplitudes) must be constant along the charac-
teristics xP(t):

i}

dt
i.e. aP(x,t) are Riemann invariants. A value of Riemann invariant on the boundary of a cell (x = x;1,,) at the moment t +
could be computed using its value at the moment ¢ as

o (Xiv1/2, t+ T) = 0 (X1 2 — APT,1). (24)

Fig. 3 shows two adjacent cells i and i + 1. The characteristics in the cell i have index p,, in the cell i + 1 - indeXx p,. One of
the characteristics xP1 (t) with the eigenvalue /' > 0 is shown in the cell i, another one x> (t) with the eigenvalue /”> < 0 is
shown in the cell i + 1. According to (24) the amplitude of a wave at point 3, which propagates inside the cell i along the
characteristic x1 (t) with the eigenvalue /71, is equal to its value at point 1. In the same way the amplitude of a wave at point
3, which propagates inside the cell i + 1 along the characteristic x2(t), is equal to its value at point 2.

The state at point 3, which is computed according to (22) by summation with respect to all the eigenvectors, fixed in cell i,
with /' > 0 will be on the left side of the interface. Let V' denote this value. Similarly, let V¥ denote the state at point 3 on
the right side of the interface which is computed by summation with respect to all the eigenvectors fixed in cell i + 1, with
P2 < 0.

The amplitudes of waves a? (x?, t) at the point x” = X;.1,» — 4’7 in (24), which influence the right boundary of cell i(#* > 0),
can be computed by multiplying the expansion (22) by the left eigenvectors, fixed in cell i:

(X t) =PV L), >0, (25)

where

P\ = B,
V)= Vi (26)

We can use arbitrary values for the wave amplitudes for /” < 0 because these waves have no effect on the right boundary
of the cell and will be omitted in the sum (22). For convenience let them be

(kP t) = PV(x;,t), P <0. (27)
With the help of @-function we can rearrange (25)-(27) as
P (X, t) = O(F)(PV(X, 1) + (1 — O(F)(PV(x;,1)). (28)

Multiplying (28) by r” and summing over all p such as 7 > 0 according to (22), after some simple manipulations we obtain
the boundary value at time t + 7:

X
VE (Xis1j2, E 4 T) = V(xi, t) + PPV, ) — V(x;, 1)) (29)
p(#>0)

M i 3 i+1
t+T ..................................................................

A 2T

X

Xis2 Xi1r2 Xi+312

Fig. 3. The characteristics in the adjacent cells for /”* > 0 and /” < 0.
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If we consider cell i + 1 and waves with 47 < 0 we will obtain a similar expression for the value V¥ on the right side of the
interface at time t + t:

>
VR(Xi1 /2.t +T) = V(Xior, 1) + PPV, t) — V(xi,1,1))]. (30)
p(##<0)

The left and the right eigenvectors in (29) and (30) are fixed in every cell. To compute them we can use a state from any
point x inside the cell - it has been shown by numerical experiments that this choice has no influence on the solution. We
suggest using the values of states in the centers of the cells, i.e. I’ = IP(V(x;, t)).

A possible approximation of the component V(x) of the vector-function V(x, t) inside grid cells i and i + 1 at some time
step is shown in Fig. 4. The arrows point to the values on the left and the right sides of the interface, note that V* = V&,
The dotted lines are the average values of V(x):

1 z Xiy1/2
Vi=— V(x)dx.
Xi-1/2

In order to solve the 3D problem we split the initial set (15) by the space variables and solve the 1D equations separately
for the x-, y- and z-directions. However, in this case we have an additional change in the quantities because of the fluxes in
the orthogonal directions. For example, a flux in the y-direction will affect the quantities at point 1 between cells (i,j) and
(i+ 1,j) (see Fig. 5). To obtain the correct result, we can solve Eq. (15) in the x-direction considering the terms Bo,V and C9,V
as sources. Then instead of (23) we arrive at

0P + X0y = -DP, p=1,...,8, (31)
where D? are the components of the vector
D = Ly(BoyV) + Ly (Ca,V). (32)
The components of the partial derivatives in (32) can be calculated as
% -V
p _ ij+1/2k ij—1/2k
oyVP = Ay . (33)

The solution of (31) can be obtained from a Taylor series expansion of o (x, t) near the boundary x = x;,1,,. It is similar to (24)
but has the additional term

Vi1

X
>
Xir2 Xiv1/2 Xi+3/2

Fig. 4. Approximation of V(x) in the adjacent cells.

A Y
j+1 . °
2
1
J ° b 4 °
X
. >
i i+1

Fig. 5. A 2D mesh.
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T

OCP(XH]/z, t+ 'E) = OCP(XH]/Z — ;LPT7 t) — Dp(t) j (34)
Then instead of (29), (30) we arrive at
> h i

Vi (X2, t47) = V(X b) + P V&, 6) - V(xi,t) - D°(t)5 (35)

p(#>0) 2 _

> 7!
VR(Xi 12,8 +7) = V(Xii1, ) + PP VE, L) —V(Xq,t) - Dl’(r)j (36)

p(#<0)

In (34)-(36) we have omitted indices j and k. The state at point 2 on Fig. 5 is computed in a similar way considering the x-
derivative as a source.

To obtain states Vi1, in PPML, we solve the Riemann problem for the V! and VR states on every interface using, e.g. the
Roe solver [21] or the HLLD solver [22]:

Vi+1/2 :R(VL7VR)7 (37)

where R is the Riemann solver. Note, that in the original PPM, the states V;,,, are obtained through monotonic interpolation
[7]. We then apply a monotonicity- and extrema-preserving procedure proposed by Rider et al. [14] to the values of Vi 4 ,, as
described in Section 6. Finally, we modify the resulting interface states with the standard PPM monotonicity procedure (5),
(6).

So far we have obtained the boundary values of piecewise parabolae at time t + 7 in each grid cell. Now we need to define
the fluxes to compute the new central states. Again we can use the Roe solver [21] or the HLLD solver [22] with V' and V?
from (35), (36) but in this case the numerical scheme will have the first order of temporal accuracy. To design a second order
scheme, we must average the amplitudes o (x,t) over the zones of influence.

Fig. 6 shows a set of characteristics corresponding to waves with 4?7 > 0. The characteristic x' (t) has the maximum eigen-
value 2'. Point 1 is the point of intersection between this characteristic and the piecewise parabola at time t. Obviously, only
the zone between the interface x = x;,1> and point 1 affects the left boundary state at point 2.

If we consider a wave which propagates along the characteristic with 2” > 0 inside cell i, its averaged amplitude on the
interface x = x;,1/; at time t + 7 can be calculated as

1 Xit1/2

Oy p = T of (x)dx, P> 0. (38)

Xis12= T
Multiplying the expansion (22) by the left eigenvectors, fixed in cell i, will yield
oP(x) =PV(x), P >0. (39)

Inserting (39) into (38) and removing the factor I’ from the integral, we arrive at

= _ Pyl

%1 =VViY 5

. 1 Xii1)2 40

viLfl/Z = V(x)dx, 27 >0. 4o
~T X121

After that we can arrive at
> h T i
yL _ yl1 P y7L.p y7L.1
v - vi+1/2 + rp l vi+1/2 - vi+1/2 - Dpj )
p(7P>0)

(41)

t+fc ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

t """"""""""" 1 [zone of influence X
1
1 7\‘ T ~
7z
X Xi1/2

Fig. 6. Characteristics inside a grid cell.
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which is similar to (35). Here fol/z is the averaged by formula (40) solution V(x) at time t over the zone of influence of the
wave in cell i, corresponding to the maximum eigenvalue (' > 0).
For cell i + 1 and the negative eigenvalues we arrive at

. > h _ T
VE = Vﬁ]l/Z + g vﬁpl/z - vﬁ]l/z - Dpj (42)
p(#P<0)
—r 1 Xip12—P1
P _ p
V=g VW 2<0 (43)

To get the second order of accuracy for time we must compute fluxes on every interface solving the Riemann problem with
V! and VF from (41), (42). Note that the values of components of the integrals (40) and (43) can be computed as (7) and (8),
respectively.

The time step 7 in (18) is obtained from the Courant condition

C D
. Ax Ay Az
T =0 min — > =
ik |uijal + G [igal + G Wikl + G

(44)

where ¢ is the Courant number and cf, c}’, and ¢} are the fast magneto-acoustic velocities along the coordinate directions.

5. Zero divergence constraint for the magnetic field

Our numerical method must provide numerical solutions that satisfy a condition
divB = 0. (45)

There are several approaches to this problem in the literature [18,23-25,17,26]. In our numerical scheme we used an unsplit
Godunov method for ideal MHD with a constrained transport developed in [18] that is based on the Stokes theorem

0B

5=V xE. (46)
Calculated from (46) the magnetic field obviously satisfies condition (45). To apply the Stokes theorem in 3D case, we define
the magnetic field components on the cell faces and the electric field components on the cell edges. The algorithm exploits
the fact that some components of the fluxes F,G and H are actually the components of the electric field.

For simplicity let us consider a 2D case. Thus the sixth component of the flux F is the z-component of the electric field
reversed in sign, which correspond to the left and right boundaries of a cell. The fifth component of the flux G is the z-com-
ponent of electric field, which correspond to the top and bottom boundaries of a cell. Computing Taylor series for these com-
ponents near the nodes of the mesh and averaging them, we obtain the components of the electric field at the nodes (Fig. 7).

1 left i}
_ ight top bottom
Ezi+1/21+1/2 4 Ezi+l/2j+1/2 + Ezi+1/2.j+1/2 + Ezi+1/2j+1/2 + Ezi+1/2j+l/2 )

where for example

E Zi+1/2,j+1

Ez i,j+1/2 EZi+1,j+1/2
()

% L] *-

EZi+1/2,j+1/2
xE, i+1/2,]

J .

[

—

Fig. 7. Computation of the component E, at a node.
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e b OB M
ziv1/2j+1/2 = Bzign2 T 50 i‘+1/277
8 Vi J 0
% X ij’ ij+1/2 > U,
OE, OF,
== =_ i Y12 < 0,
K i BN i
! T1 | Vit =0
2 ox iy X ij+1 ! ij+1/2 = Y-

These values of E;;,1/2;,12 are used in a discrete version of (46):
Bn+1 _ Bn T E E,:
xi+1/2§ = Pxit1/2 _A_y zi+1/2j+1/2 = Lzit1/2j-1/2
n+1 n T
Byml/z = Byij+1/2 +E E 24412 — Ezicij2ji12 -

Updated components of magnetic field at the center of (i,j)-cell are computed by averaging:

1
Bn+1 _ Bj(lltl‘l/Z 4 Bn+l

Xij 2 J xi+1/2j >
n+1 1 n+1 n+1
By;; =5 Byij 12 +Byijap -

The magnetic field computed this way will automatically satisfy (45). To make sure that this is indeed the case, divB
should be approximated by the following expression:

. 1 1
(divB);, 10512 = SAX Byit1j + Byiv1ji1 — Byij — Bxij +m Byiji1 + Byiy1j:1 — Byij — Byisaj -

6. Monotonicity constraints

A standard PPM monotonicity preserving procedure (5) and (6) is insufficient for the ideal MHD case. We need to use
additional procedures to suppress spurious oscillations.

Procedure 1. To keep a solution monotonic without reducing the order of the scheme and to preserve all the local extre-
ma in MHD simulations we can follow a number of approaches described in the literature [12-15]. In our method we rely on
a Piecewise Parabolic Accurate Monotonicity- and Extrema-Preserving procedure described in [14].

We compute the wave amplitudes ocf for the central states V; and o for the interface states Vi ;,,. We then calculate
new values for wave amplitudes of the interface states:

i+1/2

pr : PP p
op o = median(af, o 5, 00 ,)

and

Dyxx i D ~D* D D*
U = median(o?, ociﬂ/z,3oci — Zam/z),

where the median function is defined in a usual way
median(a, b, c) = a + minmod(b — a,c — a)

through the minmod function

minmod(a,b) = %(sign(a) + sign(b)) min(|al, |b|).

If o}y, = o, for all p, the procedure is completed. Otherwise, we compute a set of fifth-order WENO interface values

af’ﬂ/z‘*. using Algorithm 2.2.4 from [14], and check for a local extremum. If ocfjl*/z = of for all p, we apply Algorithm 2.1.2,
4(b), otherwise the region is monotonic but too steep to be approximated with the values obtained from the Riemann solver
(37) and we apply Algorithm 2.1.2, 4(c).

Procedure 2. To keep a solution monotonic in a multidimensional case, we employ a method proposed in [16].

Let us consider a 2D case for simplicity. A parabola that approximates a solution along the x-axis for every component

V(x) of a state V(x,t) at some point in time can be defined as

gij Ax?
V) =Vij+ (V) sijlx—x) + 50 (x=x)" =75 .
where
5y = Vi — Vi Gy —6 Vivijaj — 2Vij + Vioig .

Ax ’ Ax?
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As a limiting function ¢(V) we can use that described in [16]:

. |V,'_j — maX(V,_m)| |Vj‘}‘ — mln(Vlm)\
V)=min 1, , - 47
o) \Vij = max(Vioijaj, Visayzj, Vijo1y2, Vi)l Vi — min(Vioa a4, Vier g, Vigoage, Vig o)l 47
where | =i—-2,i—1,i,i+1,i+2,m=j—2,j—1,j,j+1,j+ 2 except (I,m) = (i,j). In a 3D case, the limiting function (47)

must include all the neighbors of the cell (i,j).

7. A FORTRAN implementation

The algorithm for computing the left and the right boundary values V* and V® (35) and (36) could be implemented in
FORTRAN this way:

integer n, n2
real dt, dx
real VL(8), VC(8), VR(8), Vm(8), V(8), D(8), dVy(8)
real Lambda(8), sumL(8), VLnew(8), VLinterface(8)
real B(8,8), L(8,8), R(8,8)
call Eigenvalues(VC,Lambda) ! compute the eigenvalues at the center of the
! cell i (VC - a state in the center)
if (Lambda(l).gt.0.) then 1 if 2! > 0 then compute a new state VInew
! on the left side of the interface between the
lcellsiandi+1
VIinew=0.
xi=1.- Lambda(1l)*dt/dx
call Vxi(xi,VL,VC,VR,Vm)

&in (1) for 1! (see (4))

formula (1); VI, VR - the left and the right
boundary values of a parabola, Vm - the result
compute the matrix B

compute the left (1) and right (R) eigenvectors

call MatrixB(VC,B)
call Vectors(VC,L,R)
D=0.
do n=1,8
do n2=1,8
D(n)=D(n)+B(n,n2)*dVy(n2)/dy ! (B’ 9,VP) (see (32) and (33))
enddo
enddo
D=D*dt/2.
sumL=0.
do n=1,8
if (Lambda(n).gt.0.) then ! only these waves affect the interface
xi=1.- Lambda(n)*dt/dx ! ¢in (1) for 7
call Vxi(xi,VL,VC,VR,V) ! V - the result (a state at the point ¢)
do n2=1,8
sumL(n)=sumL(n)+L(n,n2)*(V(n2)-Vm(n2)-D(n2)) ! a part of (35)
enddo
do n2=1,8
VInew(n2)=VLnew(n2)+R(n2,n)*sumL(n) ! a part of (35)
enddo
end if
enddo
VLinew=Vm+VLnew ! the result for (35)
else ! if the maximum eigenvalue 2! < 0
Vinew= VLinterface ! we keep the old value on the left side of the interface
end if

A FORTRAN code for computing V! and VF is similar. We only need to replace the function call call Vxi (xi,...) with
one that computes the integral (7) or (8), using

xi = Lambda(l) * dt/dx
or

xi = —Lambda(8) x dt/dx,
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respectively. Lambda (8) is the maximum absolute value of the negative eigenvalue.
To obtain a monotonic solution for a 3D MHD problem, we suggest using the following algorithm:

. Compute the average interface states V- and VF from (41) and (42).

. Solve Riemann problem between V' and VX to determine the fluxes.

Use a conservative difference scheme (18) to compute new central states.
. Modify the magnetic field at the centers accordingly, see Section 5.

. Compute the interface states V- and V® from (35) and (36).

Solve Riemann problem between V* and V¥ to determine the new interface states.
. Apply procedure 1 in x-direction (Section 6).

. Apply procedure 1 in y-direction (Section 6).

. Apply procedure 1 in z-direction (Section 6).

. Apply procedure 2 (Section 6).

. Apply PPM procedure (5) and (6).

— O VWENOU A WN =

—_

Note that only the interface states are modified by the monotonicity preserving procedures. The solution of the Riemann
problem joins the interface values, but the monotonicity procedures split them again into the left and right values.

8. Numerical tests
8.1. Riemann problem with multiple weak discontinuities

This is a 1D problem from [27]. An interval x € [0---1] is divided in two by x = 0.5. The left and the right states at the
initial moment are defined as
(p",ut, v wh B}, B, p') = (1.08,1.2,0.01,0.5,3.6,2,0.95),
(p®,uF, oF W, BE, BE, pF) = (1,0,0,0,4,2,1),
By =2,7=5/3,N = 512. The solution involves two fast shocks with Mach numbers 1.22 and 1.28, two slow shocks with
Mach numbers 1.09 and 1.07, two rotational and one contact discontinuities. The solution for the moment t = 0.2 is pre-

sented in Figs. 8-10. The solid line represents the exact solution and points represent the numerical one. PPML produces very
sharp fronts resolved with only a few grid points.

8.2. Numerical dissipation and decay of Alfvén waves

Numerical calculations on a discrete grid always lead to energy loss due to numerical dissipation. In order to estimate the
properties of numerical dissipation of the PPML ideal MHD scheme, we used the test problem from [28] and followed a decay
of two-dimensional Alfvén wave. We used a standing wave propagating along the grid diagonal with initial conditions

OUy = VUgmp Ca SIN(KeX + kyy),
8p = 0p = 6v, = 6v, = 0B, = 0B, = 6B, = 0

— 2_
[P C P
1.6 — 1.8;
- 1.6_
14 -
B 1.4;
12? 1.2’_
L X . -
1 B X
T T P | T 1 T 1 T 1 L1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75

Fig. 8. Riemann problem with multiple weak discontinuities. Density and pressure distributions.
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Fig. 9. Same as in Fig. 8 but for y- and z-components of the magnetic field.
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Fig. 10. Same as in Fig. 8 but for x- and y-components of the velocity.

in a stationary background flow with p, = 1,p, = 1,Bx = 1,B, = B, = 0. This gives the sound speed ¢ = 1.291 and the Alfvén
velocity ¢, = 0.7071. The computational domain is a éiluare box with size L = 1 divided into 64 x 64 grid cells. The wave-

numbers k, = k, = 27/L, the total wave number k = ki + ki =+/2(2m/L), the initial peak amplitude v, = 0.1, adiabatic

exponent y = 5/3. Computations were carried out with a Courant number ¢ = 0.4. We used the periodic boundary
conditions.

Fig. 11 shows the envelope for the maxima of z-component of the magnetic field and velocity obtained with PPML and
PPM reconstruction procedures as a function of time. While both schemes show very low dissipation, PPML dissipation is
even smaller than that of PPM.

8.3. Travelling circularly polarized Alfvén wave problem

This problem was suggested in [23] as a test for numerical accuracy of smooth flow solutions. The circularly polarized
Alfvén wave propagates at an angle of o = 30° with respect to an axis x in the domain [0,1/cos ] x [0, 1/ sin«]. The initial
conditions are

p=1, y;=0, v